解讀激光束的反射和吸收的原理
如果被加工表面反射過多的光能,則吸收的能量減少,工作效率降低,并且反射光可能對光學系統造成損害。因此激光束的反射和吸收與激光加工密切相關。
吸收和反射的值與以下關系相關:
反射率 =1- 吸收率(對于不透明材料)或
反射率 =1- 吸收率 - 透射率(對于透明材料)
光在介質中的傳輸
從空氣到不透明的完美平坦干凈金屬表面的法線入射角的反射系數 R 可以使用以下公式計算:
R=[(1-n) 2 +k 2 ]/[(1+n) 2 +k 2 ]
不透明金屬表面的吸收率A為:
A=1–R=4n/[(n+1) 2 +k 2 ]
其中n是材料的折射系數,k是材料的消光系數。這兩個值都可以在手冊中查找。我們在下表中列出了一些值。請記住,這些光學特性是輻射波長的函數,并隨溫度而變化。
接下來我們研究影響反射率和吸收率的因素。
波長:波長越短,光子的能量越高 。波長較短的光子比波長較長的光子更容易被材料吸收。因此,R 通常隨著波長變短而減小,而當光子能量增加時吸收增加。
溫度:隨著溫度升高,聲子數量將會增加。電子更有可能與結構相互作用,而不是與入射光子相互作用。因此,隨著溫度的升高,反射率下降,吸收率增加。
入射角和偏振面:反射率隨入射角和偏振面而變化。如果偏振面位于入射面,則該光線稱為平行光線(“p”光線);如果偏振面垂直于入射面,則該射線稱為“s”射線。“p”射線和“s”射線的完美平面的反射率系數為:
R p =[(n-1/cos f ) 2 +k 2 ]/[(n+1/cos f ) 2 +k 2 ]
R s =[(n-cos f ) 2 +k 2 ]/[(n+cos f ) 2 +k 2 ]
其中f是入射角,n是折射系數,k是材料消光系數。我們看到這里p射線和s射線的反射率是不同的,p射線比s射線更容易被材料吸收。
例:利用表中的數據,求出Nd:YAG激光束輻射在Al表面上的s射線和p射線反射和吸收,入射角為60度。
解:對于鋁,k=8.5,n=1.75,
R s =[(n-cos f ) 2 +k 2 ]/[(n+cos f ) 2 +k 2 ]=[(1.75-cos60)^2+8.5^2]/[(1.75+cos60)^2+8.5^2]=73.8125/77.3125=0.955=95.5%
s 射線吸收率 =1-Rs=4.5%
R p =[(n-1/cos f ) 2 +k 2 ]/[(n+1/cos f ) 2 +k 2 ]=[(1.75-1/cos60)^2+8.5^2]/[(1.75+1/cos60)^2+8.5^2]=72.3125/86.3125=83.8%
p 射線吸收 =1-Rp=16.2%
例:利用表中的數據,求 Nd:YAG 激光束輻射在 Fe 表面上的 s 射線和 p 射線反射和吸收,入射角為 60 度。
解:對于鐵,k=4.44,n=3.81,
R s =[(n-cos f ) 2 +k 2 ]/[(n+cos f ) 2 +k 2 ]=[(4.44-cos60)^2+3.81^2]/[(4.44+cos60)^2+3.81^2]=77.18%
s 射線吸收率 =1-Rs=22.82%
R p =[(n-1/cos f ) 2 +k 2 ]/[(n+1/cos f ) 2 +k 2 ]=[(4.44-1/cos60)^2+3.81^2]/[(4.44+1/cos60)^2+3.81^2]=36.56%
p 射線吸收 =1-Rp=63.44%
▍最新資訊
-
碳化硅(SiC)的材料優勢、制造技術突破、應用實例
碳化硅(SiC)作為一種高性能材料,在光學領域尤其是大口徑光學反射鏡的應用中,展現出了卓越的性能和廣闊的應用前景。其獨特的材料特性使其成為空間觀測、深空探測等領域的核心材料。本文將從材料優勢、制造技術突破、應用實例以及未來發展趨勢四個方面,全面解析碳化硅在光學領域的應用。
2025-04-03
-
光模塊有什么作用?哪些設備要用到光模塊?
光模塊作為通信系統中的關鍵光電子器件,扮演著至關重要的角色。它不僅是實現高效數據傳輸的核心技術,更是推動現代通信網絡不斷發展的基石。本文將深入探討光模塊的作用、應用場景以及未來的發展方向。
2025-04-03
-
相量熱成像技術取得新突破:賦能生命體征監測與早期疾病檢測領域
近年來,熱成像技術在醫療領域的應用不斷拓展,但傳統熱成像技術在檢測細微溫度變化和復雜環境下的精確性方面仍存在局限。如今,佐治亞理工學院(Georgia Tech)的研究團隊通過開發一種名為相量熱成像技術(Phasor Thermo graphy,PTG)的新型方法,成功克服了這些挑戰,為生命體征監測和早期疾病檢測開辟了新的可能性。
2025-04-02
-
熒光顯微鏡與激光共聚焦顯微鏡的異同
在細胞形態學研究中,熒光顯微鏡和激光共聚焦顯微鏡是兩種常用的設備。雖然它們都利用熒光信號進行成像,但兩者在光源、成像方式、分光方式、檢測器和針孔設計上存在顯著差異,這些差異直接影響了它們的成像質量和適用場景。本文將詳細比較這兩種顯微鏡的異同,并探討它們在實際應用中的優劣勢。
2025-04-02