解讀激光束的反射和吸收的原理
如果被加工表面反射過多的光能,則吸收的能量減少,工作效率降低,并且反射光可能對光學系統(tǒng)造成損害。因此激光束的反射和吸收與激光加工密切相關。
吸收和反射的值與以下關系相關:
反射率 =1- 吸收率(對于不透明材料)或
反射率 =1- 吸收率 - 透射率(對于透明材料)
光在介質(zhì)中的傳輸
從空氣到不透明的完美平坦干凈金屬表面的法線入射角的反射系數(shù) R 可以使用以下公式計算:
R=[(1-n) 2 +k 2 ]/[(1+n) 2 +k 2 ]
不透明金屬表面的吸收率A為:
A=1–R=4n/[(n+1) 2 +k 2 ]
其中n是材料的折射系數(shù),k是材料的消光系數(shù)。這兩個值都可以在手冊中查找。我們在下表中列出了一些值。請記住,這些光學特性是輻射波長的函數(shù),并隨溫度而變化。
接下來我們研究影響反射率和吸收率的因素。
波長:波長越短,光子的能量越高 。波長較短的光子比波長較長的光子更容易被材料吸收。因此,R 通常隨著波長變短而減小,而當光子能量增加時吸收增加。
溫度:隨著溫度升高,聲子數(shù)量將會增加。電子更有可能與結構相互作用,而不是與入射光子相互作用。因此,隨著溫度的升高,反射率下降,吸收率增加。
入射角和偏振面:反射率隨入射角和偏振面而變化。如果偏振面位于入射面,則該光線稱為平行光線(“p”光線);如果偏振面垂直于入射面,則該射線稱為“s”射線。“p”射線和“s”射線的完美平面的反射率系數(shù)為:
R p =[(n-1/cos f ) 2 +k 2 ]/[(n+1/cos f ) 2 +k 2 ]
R s =[(n-cos f ) 2 +k 2 ]/[(n+cos f ) 2 +k 2 ]
其中f是入射角,n是折射系數(shù),k是材料消光系數(shù)。我們看到這里p射線和s射線的反射率是不同的,p射線比s射線更容易被材料吸收。
例:利用表中的數(shù)據(jù),求出Nd:YAG激光束輻射在Al表面上的s射線和p射線反射和吸收,入射角為60度。
解:對于鋁,k=8.5,n=1.75,
R s =[(n-cos f ) 2 +k 2 ]/[(n+cos f ) 2 +k 2 ]=[(1.75-cos60)^2+8.5^2]/[(1.75+cos60)^2+8.5^2]=73.8125/77.3125=0.955=95.5%
s 射線吸收率 =1-Rs=4.5%
R p =[(n-1/cos f ) 2 +k 2 ]/[(n+1/cos f ) 2 +k 2 ]=[(1.75-1/cos60)^2+8.5^2]/[(1.75+1/cos60)^2+8.5^2]=72.3125/86.3125=83.8%
p 射線吸收 =1-Rp=16.2%
例:利用表中的數(shù)據(jù),求 Nd:YAG 激光束輻射在 Fe 表面上的 s 射線和 p 射線反射和吸收,入射角為 60 度。
解:對于鐵,k=4.44,n=3.81,
R s =[(n-cos f ) 2 +k 2 ]/[(n+cos f ) 2 +k 2 ]=[(4.44-cos60)^2+3.81^2]/[(4.44+cos60)^2+3.81^2]=77.18%
s 射線吸收率 =1-Rs=22.82%
R p =[(n-1/cos f ) 2 +k 2 ]/[(n+1/cos f ) 2 +k 2 ]=[(4.44-1/cos60)^2+3.81^2]/[(4.44+1/cos60)^2+3.81^2]=36.56%
p 射線吸收 =1-Rp=63.44%
▍最新資訊
-
什么是超快激光物理?超快激光物理基本概念和關鍵現(xiàn)象!
在光子學的世界里,超快激光物理是一個領域,它涉及到激光中以皮秒、飛秒甚至更快時間尺度發(fā)生的超快過程。這篇文章將帶您深入了解這一領域的基本概念、關鍵現(xiàn)象以及它們對現(xiàn)代光學技術的影響。
2024-12-20
-
全玻璃微型GHz重復率飛秒激光腔:光學制造的新突破
在現(xiàn)代光學領域,飛秒激光器因其超短脈沖和高峰值功率而在眾多應用中扮演著關鍵角色。從微細加工到生物醫(yī)學,飛秒激光技術不斷推動科技的邊界。最近,一項革命性的進展在《Optica》期刊上被報道,研究人員成功開發(fā)了一種全玻璃微型GHz重復率飛秒激光腔,這一成果不僅在技術上實現(xiàn)了重大突破,也為光學系統(tǒng)制造提供了全新的范例。
2024-12-20
-
什么是逆向光刻技術?
半導體制造領域,光刻技術是實現(xiàn)集成電路圖案轉(zhuǎn)移的關鍵工藝。隨著摩爾定律的不斷推進,光刻技術正面臨著前所未有的挑戰(zhàn)。逆向光刻技術(ILT)作為計算光刻的一個重要分支,通過像素級的修正,顯著提升了光刻成像質(zhì)量,增強了工藝窗口和圖形保真度。本文將探討逆向光刻技術與半導體光刻機裝調(diào)的結合,以及它們?nèi)绾喂餐瑧獙χ圃爝^程中的挑戰(zhàn)。
2024-12-20
-
QGI成像技術照亮生物燃料作物研究新路徑
在極低光照水平下捕捉圖像的QGI技術,為活體植物成像提供了一種無需暴露于有害波長下的新方法。洛斯阿拉莫斯國家實驗室(LANL)的研究小組利用非退化QGI技術,在比星光低幾個數(shù)量級的光照下成功獲取了活體植物的圖像,為生物成像領域帶來了革命性的進展。
2024-12-19